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Abstract

This work presents an in-depth investigation of the use of deep neural networks
for the prediction of short-term severe precipitations. We focus on attention-based
network topologies for forecasting, and the scaling techniques for weather features.
We have discovered that feature scaling is critical in the context of severe precip-
itation prediction. Attention-models with robust scalers outperform previous ap-
proaches and the uncertainty associated with future forecasts is reduced.

Introduction

Climate change is one of the most crucial challenges influencing hu-
manity’s future and consequently, severe weather events will rise in fre-
quency and severity. Recent approaches to numerical weather prediction
(NWP) are becoming increasingly inaccurate and unstable due to the un-
predictability of weather extremes as a direct result of climate change. A
widely applied neural network architecture for NWP is the Convolutional
Neural Network (CNN). CNNs are not spatially invariant to the input data
and do not encode the position of each value in the input matrix, which
pose many challenges to detection.

This work addresses the space invariance issue by combining the con-
volutional layer with a multi-head self-attention module. Moreover, by
applying Robust Scalers to a number of precipitation features, we success-
fully normalized temporal measurements and achieved significantly better
detection rates of extreme events. Compared to previous methods, the pro-
posed model achieves better accuracy in detecting extreme events and with
much lower costs.

Main Objectives

1. We evaluated current methods for extreme precipitation prediction using
a number of different datasets.

2. We have created a novel neural network: Self-Attention Convolutional
Neural Networks.

3. We applied Robust Scalers to a number of precipitation features.

4. We repeated experiments and made evaluations with a multitude of
model variatons on real-world datasets.

Methods

We build a self-attention augmented convolutional neural network to pre-
dict severe precipitation days using daily SLP and 500-hPa GPH anoma-
lies. Each day’s input data is processed via various layers to produce an
output categorization of extreme precipitation or non extreme precipita-
tion. Our model receives a three-dimensional matrix with dimensions of
15 · 35 · 2 for each day (i.e., latitude · longitude · 2 input variables). Precip-
itation data is used to produce ground-truth labels for model training.

Figure 1: Model Architecture

Attention-Augmented Convolutions

We propose concatenating convolutional feature maps with a set of feature
maps obtained by self-attention to enhance convolutional operators with
this self-attention mechanism.

Given an input tensor of shape (H,W,D), which represents the height,
width, and the feature depth of the anomalies respectively, we flatten it to a
matrix A(1, H ·W ·D) and perform multihead attention. The output of the
self-attention mechanism for a single head h can be formulated as below:

Attn(X) = softmax(
QKT√

dk
)V (1)

where: Q = (X ∗ Wq), K = (X ∗ Wk), V = (X ∗ Wv), Wq, Wk, Wv

are the learned linear transformations that map the input X to queries (Q),
keys (K), and values (V ) respectively.

A single attention score calculation uses O(A2 · h) space, with the multi-
head attention calculation using O(A2 · h2) space. This is much more
efficient than many other previous attention-based augmentations to the
convolutional layer due to omitting relative position embeddings. The
multi-head attention calculation is performed on a single head at a time,
and the output of the multi-head attention is concatenated to the output of
the convolutional layer.

MHA(X) = Concat[Attn1(X), Attn2(X), ..., AttnNh(X)] ∗Wmh (2)

where:

Wmh is the learned linear transformation that maps the concatenated at-
tention scores to the output of the multi-head attention.

Finally, the multi-head attention scores are concatenated to the output of
the convolutional layer:

AAConv(X) = Concat[Conv(X),MHA(X)] (3)

where:

Conv(X) is the output of the convolutional layer, and MHA(X) is the
output of the multi-head attention.

Results
This section shows the impact of feature scaling mechnisms on model per-
formance. Due to length limitations, we only showcase the performance of
the proposed self-attention augmented convolution model, with Standard
Scaler and Robust Scaler. The case of other models is very similar with
the proposed model. And these two scalers significantly outperform other
scalers.

Scalers Accuracy Recall Precision

Raw Scaler 0.9499 0.028 0.5000
Standard Scaler 0.9052 0.9369 0.3384
Robust Scaler 0.8930 0.9265 0.3119

Table 1: Feature Scaling on Model Performance (SAConvNet)

As is shown in the table, without feature scaling, the model predictions
generate predominantly arbitrary results. This is caused by the seasonal
variability of the weather data, which hence must be removed in feature
engineering.

Figure 2: Feature Scaling Visualization (GPH)

Figure 3: Feature Scaling Visualization (SLP)

Models Accuracy Recall Precision

CNN 0.8671 0.9060 0.2613
SAConvNet 0.9052 0.9369 0.3119
SAConvNet + Highway 0.9616 0.8598 0.5983

Table 2: Model Performance (on Standard Scaler)

As is shown in the table above, the proposed SAConvnet model + high-
way networks achieves the best overall accuracy of 97%, with a 12% im-

provement as compared to the CNN model result. It is capable of accu-
rately identifying more than 88% of severe precipitation days as extreme
precipitation days (EPD), similar to the classical CNN model. Extreme
precipitation occurred on 64% of days classified as EPD patterns, 1.5x
better than the CNN model. Only fewer than 12% of days, classified as
non-EPD patterns, resulted in severe precipitation.

Figure 4: Model Performance Visualization

Conclusions
This work successfully creates feature scaling techniques and network ar-
chitectural designs that improve the accuracy and applicability of extreme
precipitation forecasting. However, some extremes might still be missed
by the algorithms due to extreme precipitation often being controlled by
localized processes not reflected in the regional-mean daily precipitation.
Additionally, by incorporating geographical and climate data, the models
could provide insight into different causes of extreme precipitation and ex-
treme weather events. Because the models are trained on variables that are
available globally, transfer learning can be used to analyse extreme pre-
cipitation and additional types of extreme weather in other regions. The
results demonstrate that deep learning can provide critical insight into the
physical processes underlying changes in climate extremes.
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